Транзисторы
    Биполярный транзистор, определение и типы
    Классификация биполярных транзисторов
    Основные схемы включения биполярного транзистора
        Схема с общим эмиттером
        Схема с общей базой
        Эмиттерный повторитель
    Вольт-амперная характеристика биполярного транзистора
    Основные параметры биполярного транзистора
    Комплементарность транзисторов
    Измерение коэффициента усиления по току
    Составной транзистор
        схемы Дарлингтона
        схемы Шиклаи


Биполярный транзистор, определение и типы

 
Биполярный транзистор представляет собой трехвыводной полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n перехода. В современной электронике биполярные транзисторы уже практически не используются как силовые ключевые элементы. Причиной этого является низкое быстродействие, в сравнении с MOSFET-транзисторами, сравнительно большее энерговыделение, большие мощности управления, сложности параллельного включения и т.д. Поэтому в данной работе биполярные транзисторы будут рассматриваться с целью использования в качестве функциональных элементов (систем обратной связи, усилительных каскадов и т.д.).
Области использования биполярных транзисторов:

    в линейных стабилизаторах напряжения;
    в усилительных каскадах электронных схем;
    в генераторных устройствах;
    в качестве ключевого элемента;
    в качестве элемента логических схем;

    и т.д. и еще много где применяется, не зря за него Уильяму Шокли, Джону Бардину и Уолтер Браттейну нобелевскую премию дали.
Биполярные транзисторы имеют два основных типа структуры:

    n-p-n;
    p-n-p.

Биполярный транзистор имеет два p-n перехода – эмиттерный и коллекторный. База у переходов общая. Биполярный транзистор управляется током.

Условное обозначение биполярных транзисторов n-p-n и p-n-p структур показано на рисунке BJT.1.
Рисунок BJT.1 – Условное обозначение n-p-n и p-n-p транзистора

Классификация биполярных транзисторов

Биполярные транзисторы условно подразделяются на различные типы в соответствии со следующими измерениями параметров:

    - рабочая частота;
    - рассеиваемая мощность;
    - структура (обычный транзистор или составной транзистор Дарлингтона);
    - и разумеется тип полупроводниковой структуры – n-p-n и p-n-p.

Основные схемы включения биполярного транзистора

Мы не будем вдаваться в подробности внутренней кухни транзистора в сложные хитросплетения взаимодействия электронов и дырок. Просто рассмотрим транзистор как маленький черный ящик с тремя ножками. Существует три основных способа включения трех ножек транзистора:

    - схема с общим эмиттером;
    - схема с общей базой;
    - эмиттерный повторитель.

Рисунок BJT.2 - Основные способы включения биполярного транзистора:
а - схема с общим эмиттером; б - схема с общей базой; в - эмиттерный повторитель

Схема с общим эмиттером

Схема с общим эмиттером
– самая распространённая схема включения биполярного транзистора (рисунок BJT.3). Обеспечивает усиление сигнала, как по напряжению, так и по току. Обеспечивает максимальное усиление по мощности среди всех прочих схем включения биполярного транзистора. В данной схеме протекание тока по цепи база-эмиттер IB (часто просто называемый ток базы) приводит к протеканию тока в цепи коллектор-эмиттер IC (называемый обычно просто током коллектора). Коэффициент пропорциональности между током базы и током коллектора называется коэффициент усиления транзистора по току в схеме с общим эмиттером
hFE
:
Еще
hFE
часто обозначается как β или в советской литературе как
h21э
.
    Важным преимуществом схемы является возможность использования только одного источника питания. Кроме этого, при проектировании схем важно учитывать то, что выходное напряжение инвертируется относительно входного.
Рисунок BJT.3 - Схема включения биполярного транзистора с общим эмиттером

Схема с общей базой

Значительно менее распространённое включение биполярного транзистора (рисунок BJT.4).
Рисунок BJT.4 - Схема включения биполярного транзистора с общей базой
Обеспечивает усиление сигнала, но только по напряжению. Ток практически не изменяется или немного уменьшается. Ток в цепи коллектора связан с током эмиттера IE коэффициентом передачи ток α близким к единице, но меньшим её:

Коэффициент передачи тока рассчитывается исходя из соотношения:
где hFE – все тот же коэффициент усиления транзистора по току в схеме с общим эмиттером.

Фактически силовой ток течет по цепи коллектор-эмиттер, то есть ток нагрузки полностью втекает в управляющий источник E. Это определяет малое входное сопротивление схемы Rin, фактически равное дифференциального сопротивления эмиттерного перехода
где:
VBE – напряжение база-эмиттер
Соответственно ток базы мал и равен:

Эмиттерный повторитель

Эмиттерный повторитель потому и называется повторителем, что он не усиливает входной сигнал по напряжению, а «повторяет» его. Или почти повторяет. В схеме сопротивление нагрузки включено так, что напряжение не нем вычитается из приложенного напряжения, чем реализуется отрицательная обратная связь. Схема включения биполярного транзистора в режиме эмиттерного повторителя представлена на рисунке BJT.5.
Рисунок BJT.5 - Эмиттерный повторитель
Усиление достигается только по току:
Соответственно входное сопротивление повторителя равно:
где:
hFE
- коэффициент усиления транзистора по току в схеме с общим эмиттером;
Rload
– сопротивление нагрузки.
В реальности выходное напряжение отстает от входного на величину падения напряжения на переходе «база-эмиттер» (приблизительно равное 0,6 В):

Вольт-амперная характеристика биполярного транзистора

Вольт-амперная характеристика биполярного транзистора

Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером представлена на рисунке BJT.6. Поскольку в схемах включения транзистора присутствуют две цепи (два контура) – цепь управления и цепь нагрузки то имеют место две характеристики - входная и выходная. Входная характеристика (рисунок BJT.6, а) представляет собой зависимость тока базы от напряжения на переходе «база-эмиттер» при различных напряжениях «коллектор-эмиттер». При увеличении напряжения «коллектор-эмиттер» характеристика смещается вправо – ток базы уменьшается при том же значении напряжения «база-эмиттер». Выходная характеристика представляет собой зависимость тока коллектора от напряжения «коллектор-эмиттер» при различных токах базы, что образует семейство кривых. С ростом тока базы возрастает и ток коллектора пропорционально значению hFE (справедливо для малых сигналов). При постоянном токе базы ток коллектора несколько возрастает при увеличении напряжения «коллектор-эмиттер» (рисунок BJT.6, б).

Рисунок BJT.6. Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером: а) входные характеристики; б) выходные характеристики

Основные параметры биполярного транзистора


  
Максимальное напряжение коллектор-эмиттер (Collector-Emitter Voltage) VCEO – максимально допустимое напряжение между коллектором и эмиттером транзистора. Один из наиболее важных параметров транзистора.
    Максимальное напряжение коллектор-база (Collector-Base Voltage) VCBO – максимально допустимое напряжение между коллектором и базой транзистора. Это напряжение несколько выше (на 20-30%) чем максимальное напряжение коллектор-эмиттер.
    Максимальный постоянный ток коллектора (Collector Current - Continuous) IC – максимальная величина тока через коллекторный переход в стационарном режиме.
    Максимальное обратное напряжение эмиттер-база (Emitter-Base Voltage) VEBO - максимально допустимое напряжение между управляющего перехода база-эмиттер транзистора.
    Ток утечки коллекторного перехода (Collector Cut-Off Current) ICEX – ток, протекающий через закрытый коллекторный переход под действием приложенного обратного напряжения.
    Ток утечки эмиттерного перехода (Base Cut-Off Current) IBL – ток, протекающий через эмиттерный переход под действием приложенного обратного напряжения. При этом к коллекторному переходу также приложено напряжение.
    Коэффициент передачи тока (DC Current Gain) hFE – усилительная характеристика транзистора. Коэффициент равен отношению следствия - тока коллекторного перехода к причине - току эмиттерного перехода.
    Напряжение насыщения между коллектором и эмиттером (Collector-Emitter Saturation Voltage) VCE(sat) - минимальное напряжение между коллектором и эмиттером в открытом состоянии (в «совсем открытом» состоянии при большом токе базы). Обычно составляет 0,2-0,4 В.
    Напряжение насыщения эмиттерного перехода (Base-Emitter Saturation Voltage) VBE(sat) – напряжение между базой и эмиттером при заданном токе базы.
    Максимальная частота работы транзистора (Current Gain - Bandwidth Product) fT – при этой частоте транзистор уже не усиливает сигнал, и коэффициент передачи тока становится равным единице.
    Выходная емкость, емкость коллектор-база (Output Capacitance, Collector-Base Capacitance) CCBO – емкость коллекторного перехода.
    Входная емкость, емкость эмиттер-база (Input Capacitance, Emitter-Base Capacitance) CEBO – емкость эмиттерного перехода.
    Уровень шумов (Noise Figure) NF - уровень собственных шумов транзистора.
    Время задержки включения (Delay Time) td - время задержки начала переходных процессов в выходной цепи транзистора при включении.
    Время задержки выключения (Storage Time) ts - время задержки начала переходных процессов в выходной цепи транзистора при выключении.
    Время включения (Rise Time) tr - время переходных процессов в выходной цепи транзистора при включении (время нарастания тока). Указывается при конкретных условиях коммутации.
    Время включения (Fall Time) tf - время переходных процессов в выходной цепи транзистора при включении (время спада тока). Указывается при конкретных условиях коммутации.
    Максимально выводимая тепловая мощность (Total Device Dissipation) PD – максимальное количество энергии, которую можно отвести от транзистора, выполненного в том или ином корпусе.
    Тепловое сопротивление кристалл-корпус (Thermal Resistance, Junction to Case) RθJC – тепловое сопротивление между полупроводниковым кристаллом транзистора и его корпусом.
    Тепловое сопротивление кристалл-воздух (Thermal Resistance, Junction to Case) RθJA – тепловое сопротивление между полупроводниковым кристаллом транзистора и воздушной средой при условии свободной конвекции.
    Время включения, время выключения, времена задержки включения выключения – описывают динамические свойства транзистора при тех или иных конкретных условиях.

Комплементарность транзисторов

В ряде типовых схемотехнических решений необходимо одновременное использование транзисторов n-p-n и p-n-p структуры имеющих практически идентичные параметры. Такие транзисторы называют комплементарными. Ниже приведена таблица наиболее широко используемых пар комплементарных транзисторов.
Таблица BJT.1 - Некоторые комплементарные пары биполярных транзисторов

Измерение коэффициента усиления по току

Транзисторы в пределах каждого конкретного типа имеют значительный разброс по коэффициенту усиления тока. В случае необходимости точного измерения коэффициента усиления по току использую тестеры с опцией измерения hFE.

Составной транзистор

Для увеличения коэффициента усиления используется схема включения двух и более биполярных транзисторов. Существует две разновидности схем составных транзисторов: схема Дарлингтона и схема Шиклаи (рисунок BJT.7). Каждая из представленных схем включает управляющий транзистор и силовой, через который протекает основная доля тока нагрузки.
Рисунок BJT.7 - Составные транзисторы Дарлингтона и Шиклаи
   В схемы может быть введен дополнительный резистор для изменения рабочих характеристик составного транзистора и улучшения динамических свойств схемы.
   Функционально в схеме Дарлингтона резистор обеспечивает протекание постоянного тока через эмиттер управляющего транзистора, поскольку напряжение база-эмиттер силового транзистора слабо зависит от тока базы.

Для полного понимания работы транзистора,
посмотрите учебный видеофильм.