WYSIWYG Web Builder
Диоды
Основные характеристики и параметры диодов
Определение и типы диодов
Функциональные применения диода
Характеристики диодов
Основные параметры реальных диодов
Максимальные ток и мощность диода
Режим постоянного тока
Режим импульсного тока

Видеофайлы (Лекции)

Основные характеристики и параметры диодов

  • Вольт-амперная характеристика
  • Максимально допустимое постоянное обратное напряжение
  • Максимально допустимое импульсное обратное напряжение
  • Максимально допустимый постоянный прямой ток
  • Максимально допустимый импульсный прямой ток
  • Номинальный постоянный прямой ток
  • Прямое постоянное напряжение на диоде при номинальном токе[1] (т. н.«падение напряжения»)
  • Постоянный обратный ток, указывается при максимально допустимом обратном напряжении
  • Диапазон рабочих частот
  • Ёмкость
  • Пробивное напряжение (для защитных диодов и стабилитронов)
  • Тепловое сопротивление корпуса при различных вариантах монтажа
  • Максимально допустимая мощность рассеивания

Классификация диодов

Типы диодов по назначению

  • Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.
  • Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
  • Детекторные диоды предназначены для детектирования сигнала
  • Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
  • Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.
  • Параметрические
  • Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.
  • Умножительные
  • Настроечные
  • Генераторные

Типы диодов по частотному диапазону

  • Низкочастотные


  • Высокочастотные


  • СВЧ


Типы диодов по размеру перехода

  • Плоскостные


  • Точечные


  • Микросплавные


Типы диодов по конструкции

  • Диоды Шоттки


  • СВЧ-диоды


  • Стабилитроны


  • Стабисторы


  • Варикапы


  • Светодиоды


  • Фотодиоды


  • Pin диод


  • Лавинный диод


  • Лавинно-пролётный диод


  • Диод Ганна


  • Туннельные диоды


  • Обращённые диоды


Определение и типы диодов

Полупроводнико́вый диод

— полупроводниковый прибор, в широком смысле — электронный прибор, изготовленный из полупроводникового материала, имеющий два электрических вывода (электрода). В более узком смысле — полупроводниковый прибор, во внутренней структуре которого сформирован один p-n-переход.

В отличие от других типов диодов, например, вакуумных, принцип действия полупроводниковых диодов основывается на различных физических явлениях переноса зарядов в твердотельном полупроводнике и взаимодействии их с электромагнитным полем в полупроводнике.
Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении. Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы, так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные.
Итак, диоды бывают:


- вакуумные (они же кенотроны);
- на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и карбидокремниевые (SiC) диоды;
- на основе контакта Шоттки между металлом и полупроводником.

Вакуумные диоды используются крайне редко
, только в спецприложениях, например высоковольтной и высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.

Кроме физической природы диоды классифицируются по функциональному назначению:


- выпрямительные диоды, используемые, как правило, для выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после трансформатора в трансформаторных источниках.
- быстродействующие кремниевые диоды - используются в составе импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).
- кремниевые импульсные диоды – используются в составе функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами (миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).
- высоковольтные диоды – представляют собой последовательное соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1 ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.

Отдельно следует выделить диоды Шоттки – которые используются и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению, значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных преобразователей с малым выходным напряжением.

Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку это вы ходит за рамки данного повествования.

Условное обозначение диода представлено на рисунке VD.1
Рисунок VD.1 – Условное обозначение диода на основе p-n перехода и диода Шоттки
Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом. Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом и принимались анодом. Символически диод обозначает собой направление протекания тока.

Функциональные применения диода

- выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);
- защита от превышения напряжения в схемах ограничения уровня и снабберах;
- в пиковых детекторах на операционных усилителях;
- в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);
- в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;
- схемах реализации логических операций ИЛИ (рисунок VD.3 ).

Ниже представлено несколько примеров использования диодов.
Рисунок VD.2 - Схема двухполупериодного выпрямителя
Рисунок VD.3 - Схема реализации логических операций ИЛИ
- схемах ограничения амплитуды сигнала (рисунок VD.4).
Рисунок VD.4 - Схема ограничения амплитуды сигнала

Характеристики диодов

Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.

Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение напряжения и возрастает обратный ток, снижается напряжение пробоя.
Рисунок VD.5. Форма вольтамперной характеристики диода
Из вольтамперной характеристики следуют её производные:

- прямое падение напряжение на диоде VF (при заданных токе и температуре);
- обратный ток утечки IRM (при заданном обратном напряжении и температуре);
- максимальное обратное напряжение VR (при заданной температуре).
Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики диода:

- максимальный постоянный рабочий ток;
- максимальный импульсный ток (при заданной длительности импульса);
- максимальная отводимая (рассеиваемая мощность);
- тепловое сопротивление корпуса.
Динамическими характеристиками диода, определяющими его быстродействие, являются:

- время восстановления при резкой смене напряжения с прямого на обратное;
- емкость перехода.
На рисунках VD.6 - VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для сравнения представлены ВАХ кремниевых диодов и диода Шоттки).
Рисунок VD.6 - Экспериментально измеренная вольтамперная характеристика кремниевого диода 1N4148
Рисунок VD.7 Экспериментально измеренная вольтамперная характеристика кремниевого диода FR157
Рисунок VD.8 Экспериментально измеренная вольтамперная характеристика диода Шоттки 1N5819

Основные параметры реальных диодов

1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM– максимальная величина прикладываемого к диоду импульсного обратного напряжения.
2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage) VRWM – максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.
3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует началу пробоя на обратной ветви ВАХ.
NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо, не допускать превышения напряжения на диоде данной величины.
4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage) VR(RMS) – максимальная величина действующего (среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода. Фактически подразумевается переменное напряжение синусоидальной формы.
5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное значение тока проходящего через диод в стационарном режиме.
6. Максимальный импульсный ток (Repetitive peak forward current) IFRM - максимальная амплитуда импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность импульсов и частота повторения.
7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM - максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как правило, указывается длительность импульса.
8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.
9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.
10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной величины, как правило, приводят зависимость емкости от обратного напряжения.
11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient) RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим воздухом. Зависит от типа корпуса.
12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA – максимальная рабочая температура при которой сохраняется указанное значение максимального обратного напряжения.
13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность рассеиваемая корпусом диода.
14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I2t – произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение, измеряемое в А2с (ампер в квадрате на секунду) используется при выборе защитных цепей от перегрузки (предохранителей).
15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).

Максимальные ток и мощность диода

Режим постоянного тока

Полупроводниковый диод
– нелинейный элемент мощность, рассеиваемая на диоде равна произведению напряжения на диоде
VVD
и тока через него
IVD
:
Для практических расчетов в качестве
VVD
можно брать падение напряжения при номинальном токе, указываемое в справочных листках. Поскольку напряжение на диоде составляет величину порядка 1,0-1,5 В (для кремниевого диода, для Шоттки меньше) и слабо изменяется с ростом тока, то в первом приближении можно считать, что рассеиваемая на диоде мощность прямо пропорциональна току через него:
Это существенно отличает нелинейный диод от линейного резистора, мощность которого пропорциональна квадрату тока. В справочных листках указывается максимальное значение постоянного тока через диод. Этот ток задает максимальное значение отводимой от кристалла диода тепловой мощности.

Представленная формула описывает потери на кристалле диода при прямом смещении, то есть при протекании прямого тока через диод. Потери при обратном смещении, то есть при реверсном токе обычно пренебрежимо малы, однако в ряде случаев их необходимо учитывать.

Режим импульсного тока

Импульсный ток через диод может в разы превышать максимальное значение для постоянного тока. В режиме импульсных токов на первое место выходит максимальная энергия рассеивания кристалла диода, определяющая предельные режимы импульсных нагрузок при которых еще не происходит термическое разрушение кристалла. В справочных листках обычно приводят номограммы произведения длительности токового импульса на его величину
.

Лекция - Полупроводниковый диод

Видеофайл (Лекция 14. Полупроводниковый диод)

Внешний вид полупроводникового диода

Иллюстрация принципа действия полупроводникового диода

Определение